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We propose a numerical method to find solutions of the one-dimensional Schr6dinger equa- 
tion when the potential is symmetric and can be expanded in a polynomial form. We used a 
non-perturbative method, in which we include explicitly the correct asymptotic behavior of the 
wave function computed by the WKB method. The numerical convergence is very fast and 
allows to compute the energy eigenvalues and eigenfunctions simultaneously, The method is 
applied to the quartic anharmonic oscillator with one and two wells, we compute the energy 
eigenvalues for the ground state and for the first six excited states, the results obtained are in 
agreement with those reported previously in the literature. 

1. Introduction 

There exists a great interest in finding analytic or numerical solutions for anhar- 
monic oscillators in several fields of physics, for example in field theory and atomic 
and molecular physics. In the latter, the anharmonic potentials are used to study 
molecular vibrations of some diatomic molecules [1], or in small rings of com- 
pounds like trimethylene oxide [2-4], cyclopentane [5], cyclobutane [6] and, in addi- 
tion, in the study of NH3 inversion [7,8]. 

From a mathematical point of view, some authors [9,10] have made a complete 
study about the analytic properties of the energy levels for the Hamiltonian 
H = ½(pa + xa) + Ax 4 as a function of the anharmonic parameter A. They showed 
that the problem cannot be solved by using perturbation theory, because the pertu_r- 
bative series for the energy in terms of the anharmonic parameter A diverges for 
any value of A positive. 

In their second paper, Bender and Wu [9] were able to show the complicated ana- 
lytic structure of the energy E(A) as a function of the anharmonic parameter A, 
while studying the wave function in the WKB approximation at first order in A. 
Simon [10] and after Loeffel and Martin [11] gave a formal demonstration of the 
conjectures of Bender-Wu, using Hilbert-space methods. The singular behavior of 
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E(A) for the anharmonic oscillator opens the opportunity to propose new methods 
to determine both the eigenvalues and the eigenfunctions for this problem. Loeffel 
et al. [12] proved the Stieltjes property of Rayleigh-Schr6dinger (RS) series and 
discussed the convergence of any diagonal sequence of Pad6 aproximants. Also 
they determined ground state energy eigenvalues for A ~< 0.5 using continued frac- 
tions with the quotient difference algorithm; Ci~ek and Vrscay [13] extended these 
results for A ~< 1000. The Borel summability of the anharmonic oscillator RS series 
was established by Graffi et al. [ 14], and they reported ground state energy calcula- 
tions for A~<7.0; additional discussions on the Borel summability were done by 
Caswell [15] and Zinn-Justin [16]. After Lipantov [17] introduced the functional- 
integral equivalent to WKB approximation, Br6zin et al. [18] used this idea to 
rederive the leading terms of Bender-Wu. Halliday and Suranyi [19] using the 
Lipantov's idea developed an alternative perturbation series that converges, unlike 
the conventional RS perturbation theory. Fanelli and Struzynski [20] proposed 
the inclusion of an adjustable parameter into the perturbing and unperturbed terms 
of the Hamiltonian; after this they used RS perturbation theory. They obtained bet- 
ter values than the standard perturbation theory for small values of A, and were 
able to extend the range of applicability of this method to values of A ~< 20000.0; fol- 
lowing the method of Fanelli and Struzinski, Aquino et al. [21] computed the 
energy eigenvalues for the anharmonic oscillator with double well. Iraxu [22] pro- 
posed the use of a piecewise perturbation technique in which the unperturbed 
potential is adjusted instead of the use of x2/2 as a reference potential and Ax 4 as the 
perturbation. In 1985, Berk [23] published a paper where he showed that the pertur- 
bation problem is reduced significantly if the asymptotic WKB wave function of 
zero order is employed as the zero-order wave function. In the same year Silverston 
et al. [24] obtained the RS perturbation theory energy coefficients using high-order 
perturbation theory. Vinette and (2i~ek [25] established upper and lower bounds 
of the ground state energy of anharmonic oscillators using the so-called "renorma- 
lized inner projection technique" that is a combination of renormalization and 
L6wdin's inner projection. This technique was successfully applied to quartic, sex- 
tic and octic anharmonic oscillators. 

A wide variety ofnon-perturbative methods have been used to calculate accurate 
energy eigenvalues for the anharmonic oscillator: for example, the variational 
method [26-28], the power series method [32-35], the Hill determinant method [29- 
31,40], high order WKB calculations [42], and phase integrals [43]. The inconveni- 
ence of the methods based on a matrix diagonalization is the great amount of time 
necessary to obtain high quality precision for the energy eigenvalues. In addition, 
we cannot select only one particular energy level, because with the matrix method 
one cannot avoid obtaining the lower levels too. On the other hand, with the meth- 
ods based on power series we can compute each energy level independently of the 
others. The time consumed in these calculations is very low and the convergence of 
the energy eigenvalues is very fast. 
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2. The  m e t h o d  

In this section we will calculate the energy eigenvalues for the quart ic  anha rmo-  
nic oscillator wi thout  using per turba t ion  theory.  The  corresponding Hami l ton ian  
is given, in a tomic  units,  by 

H = I  2 ~(aO "-}- X2) -4- /~X 4 / ~ > 0 ,  ( l )  

but  in order  to simplify our  discussion, it will be wri t ten as 

n ~--- ~(jgl 2 Jr" x 2) "q-I]~2x4 

where #2 = 2X The Schr6dinger  equat ion  for this system is, therefore,  

d2ff, 
d x  2 -4- [E t -  x 2 - ]-t2x4]k ~t = 0 ,  (2) 

with E'  = 2E, E being the eigenvalue of ( l ) .  Defining 

- I /3  x----/z y ,  

eq. (2) reduces to 

d2ff, 
dY -----T q_ [e _ ~-4/3y2 _ y4]~  = 0 ,  (3) 

where e =/z-2/3Et.  
I f  we assume a solut ion of  the fo rm 

o o  

qA(y) = Z anyn' (4) 
n=0 

then the coefficients an mus t  be determined.  It is easily found  tha t  for bo th  the 
even solut ion (q~(0) = 1, qT(0) = 0 or, equivalently a0 = 1, al = 0) and  the oddsolu- 
t ion (q~(0) = 0, ~b'(0) = 1 or, equivalently a0 = 0, al = 1), the recurrence relat ion 
for the coefficients is 

an-4  -- 1~-4/3 an-2  -- ean 

an+2= ( n +  1 ) ( n + 2 )  (5) 

However ,  as y increases it is necessary to take a large number  of  terms in order  to 
assure convergence.  It  is, hence, convenient  to try another  funct ion  with the correct  
asympto t ic  behavior .  Fo r  large values of  y we may  take the asymptot ic  behavior  
of  the wavefunct ion  f rom a W K B  calculat ion as follows: It is well known  that  the 
wave funct ion  in W K B  approx ima t ion  [37] is given by 

~Uw~(y) = 4~(y)exp(+i fYp(y)dy)  , 
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where 05(y) is a slowly varying funct ion and p(y) = V / e -  V0'),  for our  case 
g(y) -----/Z-4/3y 2 + 24. Then, as y is larger than  e, we can develop p(y)  t h rough  the 
binomial  theorem,  and then approximate  it asp(y)  = i(y 2 +/~-4/3). After  doing the 
integrat ion and taking the minus sign (to assure convergence when y --~ + c~), the 
exponential  par t  of  ~Uwr ~ is e x p ( - y 3 / 3  - #-4/3y/2).  Since we want  the solut ion of  
eq. (3) to be valid not  only for large values of  y, we propose  the funct ion 

3 l, z 3y. braY - m  ~'(y) = Aexp  - , (6) 
m=l 

where A is a constant .  
When  (6) is subst i tuted into (3), the following recurrence relat ion is obtained: 

b l = l ,  

b2 = - ( e  + 1#-8/3)bl /2,  

1 
b~+l - 2m [(m - 2)(m - 1)b~_2 - / z - 4 / 3 ( m  - 1)b~-i 

+ (e+l#-S/3)bm],  m > 2 .  (7) 

I f  the two solutions (4) and (6) are compat ible  for any value o f y  ¢- 0, the fol lowing 
equat ions  mus t  hold: 

q~(y) = ~u(y) and q¢0') = V'(Y) 

o r  

= 

for every y where q~(y) ¢ 0 and ~(y) ¢ 0. 
In order  to compute  the energy eigenvalues we consider  the funct ion  

f ( e , y )  = qS'(e,y)Ab(e,y ) - ~u'(e,y)/~,(e,y) (8) 

defined for values ofe  a n d y  such that  q~ and ~ do not  vanish. 
The  funct ion  thus defined is identically zero for the exact value of  the energy 

( independent ly  of  the value of  y), but  it is non-zero for other  values of  e. Therefore,  
it only remains  to find the roots  ofeq.  (8) in order  to determine the energy eigenva- 
lues. We may  begin by choosing the initial value o f y  as the classical turn ing  point ,  
while the initial energy e0 mus t  be es t imated a priori. 

Once the value o f y  is chosen (represented by y*), it is kept  fixed and the energy 
eigenvalues are calculated by the N e w t o n - R a p h s o n  method:  

en+l = e, - f ( en , y* ) / f ' ( e , , y* )  , (9) 

where the pr ime indicates derivative with respect to the energy. 
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2~ 1. NUMERICAL RESULTS 

With this method we compute  the ground state and the first six excited states 
for the anharmonic  oscillator; in table 1 we show the results. The values obtained 
are exact up to the ninth decimal figure. These results can be compared  with those 
of  refs. [30,32,35,38,39]. The eigenvalues in columns 2-4  are the same as those 
obta ined by Palma and C a m p o y  [32,35] with a different method,  whereas the result 
o f  the last column is reported only by Banerjee [30]. 

To obtain the precision shown in table 1, the number  of  terms used in each series 
were about  40 for eq. (4) and about  60 for eq. (6), using y* = classical turning 
point. 

The choice of  y* equal to or greater than the turning point  is for convenience, 
because the oscillations of  wave functions in the permit ted classical region could 
produce  points where q~(y) or ~u(y) is equal to zero and then we cannot  use eq. (8) to 
obtain  the energy eigenvalues. On the other hand, in the classically prohibi ted 
region the wave functions are very smooth  and the probabil i ty  of  finding points y* 
where eq. (8) is not  defined decreases. In practice we did not  have trouble with 
any of  our calculations using this fact. Another  remark of  computa t ional  impor- 
tance is the following: when y* is smaller than the classical turning point  we need a 
large number  of  terms to assure the convergence of  function ~u, the opposite  fact 
occurs when y* is greater than the classical turning point, then ~b converge very 
slowly; the best choice of  y* then is near the classical turning point. 

3. The  a n h a r m o n i c  osc i l la tor  wi th  d o u b l e  well 

The Hamil tonian  for the quartic anharmonic  oscillator with double well is 

H =  ½(p2 _ x 2) + Ax 4. (10) 

The main  feature of  this problem is that the lower energy eigenvalues are very clo- 

Table 1 
Energy eigenvalues for the anharmonic oscillator eq. (1) as a function of the anharmonic parameter 
A. The eigenvalues were obtained using eq. (9) takingy* = classical turning point. These values are in 
complete agreement with those reported previously in refs. [30,32,35,38,39]. 

n A = 0.1 A = 0.25 ~ = 1.0 ~ = 100 ~ = 5000 

0 0 .559146327 0 .620927029 0.803770651 3.131384164 11.430804350 
1 1 .769502644 2 .025966164 2.737892268 11.187254251 40.951658476 
2 3 .138624308 3.698450319 5.179291687 21.906898149 80.342956305 
3 4 .628828089 5.557577138 7.942403984 34.182524112 125.475371945 
4 6 .220300900 7.568422873 10.963583094 47.707205851 175.217948105 
5 7 .899767227 9.709147876 14.203139104 62.281237969 228.832287501 
6 9 .657839992 11.964543620 17.634049116 77.770770599 285.823895809 
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sely (almost degenerate) bunched in pairs when the wells are very far. The most  
interesting quanti ty  to compute  is the splitting between these pairs of  energy levels 
when A-+0  because the separation distance between the two wells follows A -1/2. 
This problem cannot  be solved with the use of  per turbat ion theory. This can be 
qualitatively unders tood by observing that  the term Ax 4 t ransforms the cont inuous 
spectrum 1_(/,2 _ x 2) into a completely discrete spectrum. The alternative perturba-  2 
tion expansion in parameter  A takes H0 lp2 + x 4 as the non-per turbed Hamil to-  n-2 
nian (assuming that  this spectrum is known), but this alternative does not  work, 
because the perturbat ion becomes too large for small A, which is the regime of  
interest. 

The Schr6dinger equation for the anharmonic  oscillator with double well is 

d2~/dy2 + [Et+/~-4/3y2 _ y4]ff t = 0, (11) 

where #, y and E'  were defined in section 2. We may  use the method  described in 
section 2 to solve eq. (11) without important  modifications. The solution near  the 
origin is, as before, given by eq. (4), whereas the far solution that  includes the 
asymptot ic  behavior is 

q/(y) = e x p  + Z b m y  -m . (12) 
m=l 

Substitution of  solutions (4) and (12) into eq. (11) gives a recurrence relation for 
the coefficients a, and b,. To compute  the energy eigenvalues it is necessary to find 
the zeros of  function f defined by eq. (8). To do this we need to evaluate both f 
a n d f '  in a point y* whose value must  be greater than or equal to the m ax i m um  of  
the classical turning points. The classical turning points are determined by the 
equat ion 

y4 _ /~-4 /3y2 _ E t = O. 

3.1. NUMERICAL RESULTS 

The energy eigenvalues obtained using this method  are given in table 2. In addi- 
tion to the quan tum number  n we include the spectroscopic nota t ion where the 
superindex s means the symmetric state and a denotes the ant isymmetr ic  one. The 

Table 2 
Energy eigenvalues for the anharmonic oscillator with double well as a function of parameter A. 

n State ), = 0.005 A = 0.01 A = 0.02 ~ = 0.05 ), = 0.10 

0 0  ~ -11.797975697 -5.553236207 -2.439438881 -0.632746418 -0.154124828 
1 0  a -11.797975697 -5.553236206 -2.439345769 -0.576529565 0.142765102 
2 1" -10.414903197 -4.203985943 -1.174320024 0.254744272 1.010188900 
3 1 a -10.414903197 -4.203985695 -1.165868331 0.771773019 1.949137370 
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values showed in table 2 were also obtained by Banerjee [40] by using a different 
method;  another  approach to solve this problem based on the variational me thod  
can be found in refs. [27,28]. These values were obtained using about  100 terms in 
the wave functions (about 40 for eq. (4) and about  60 in eq. (12)). 

The remarks  about  the selection of  y* discussed in the previous section are valid 
for this problem too. 

4. P u r e  quartic oscillator 

As a final example, we consider the pure quartic potential 

V(x)  = x ' .  

Using the method  of  previous sections, we first obtain the recurrence relations for 
the coefficients an and bn: 

even states: 

ao = l , aE = - - E / 2 ,  

odd states: 

al = l ,  a 3 = - E / 6 ,  

In general we have 

an-4 - JEan 
for n>~4. 

an+2 -- (n q- 1)(n + 2) 

Whereas for the asymptot ic  solution, we have 

bl --- 1, bE = - E / 2 ,  b3 = - E b E / 4  

and 

a4 = - E a E / 1 2  ; 

a5 = - E a 3 / 2 0 .  (21) 

Ebn + ( n -  1 ) ( n -  2)bn-E for n>~3. 
b,+l = - 2n 

The energy eigenvalues for this problem are reported in table 3, they are compared  

Table 3 
Energy eigenvalues for potential V(x) = x 4. 

n Present work Exact ref. [31,41] 

0 1.0603620904 1.06036209048 
1 3.7996730298 3.79967302980 
2 7.4556979379 7.45569793798 
3 11.644745511 11.6447455113 
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with those obtained by the method of  refs. [31,41]. We can see that  our calculations 
are in agreement  with previous calculations. 

5. Conc lus ions  

The method  proposed in this paper allows to compute  every energy level inde- 
pendently of  the others. To do this it is necessary to initialize the process by giving 
an initial value for the energy eigenvalue e0 and the point y* is usually taken as the 
classical turning point or greater. Sometimes, when y* is too small the function q~ 
(eq. (4)) converges very fast, but  the function ~, (eq. (6) or (11)) converges very 
slow (or does not  converge); in this case it is convenient to increase the value of  y* to 
assure the convergence of  both functions. 

The convergence of  our method is better than those ment ioned in this paper  
because we are including the asymptotic behavior explicitly in the wave function. 
We can use this method  without modifications for the anharmonic  oscillator with 
one and two wells, whereas the Biswas [29] and Saxena [36] methods  cannot  be used 
for both problems. 

As we showed, the method  is used without  modifications for quite different 
values of  the anharmonic  parameter  A given the same precision for the eigenvalues. 
I f  we want  to know the explicit form of  the wave function, it can be calculated 
f rom eqs. (4) and (6). 

A c k n o w l e d g e m e n t s  

The author  would like to thank M. Berrondo, A. Palma and R. Rodriguez for 
his useful commentaries .  The author  also wishes to thank the referee for his useful 
comments  on the introduct ion of  this work and ref. [24]. 

References  

[1] H.W. Kroto, Molecular Rotation Spectra (Wiley, 1975). 
[2] J. Fernandez, R.J. Meyers and W.D. Gwinn, J. Chem. Phys. 23 (1955) 758. 
[3] S.I. Chan, J. Zinn, J. Fernandez and G.W. Gwinn, J. Chem. Phys. 33 (1960) 1643. 
[4] S.I. Chan, T.R. Borges, J. Russell, H.L. Strauss and W.D. Gwinn, J. Chem. Phys. 44 (1966) 

1103. 
[5] G.W. Rathjens, J. Chem. Phys. 36 (1962) 2401. 
[6] G.W. Rathjens, N.K. Freeman, W.D. Gwinn and K.S. Pitzer, J. Am. Chem. Soc. 75 (1953) 

5634. 
[7] G. Campoy, A. Palma and L. Sandoval, Int. J. Quantum Chem.: Quantum Chem. Syrup. 23 

(1989) 355. 
[8] N. Aquino, M.Sc. Thesis, UNAM, M6xico (1992), unpublished; 

N. Aquino, A. Palma, J.L. L6pez and M.A. Rosales, Pramana J. Phys. 54 (1995) 75. 



N. Aquino / Asymptotic series for anharmonic oscillator 357 

[9] C.M. Bender and T.T. Wu, Phys. Rev. Lett. 21 (1968) 406; Phys. Rev. 184 (1969) 1231; Phys. 
Rev. Lett. 27 (1971) 461; Phys. Rev. D7 (1972) 1620. 

[10] B. Simon, Ann. Phys. 58 (1970) 76. 
[11] J. Loffel and A. Martin, Proc. R. C. Programe25 Conf., Strasbourg, 1970, unpublished. 
[12] J. Loffel, A. Martin, B. Simon and A. Wightman, Phys. Lett. B30 (1969) 656. 
[13] J. Ci~ek and E.R. Vrscay, Int. J. Quantum Chem. 11 (1981) 27. 
[14] S. Graffi, V. Grecchi and B. Simon, Phys. Lett. B32 (1970) 631. 
[15] W.E. Caswell, Ann. Phys. (N.Y.) 123 (1979) 153. 
[16] J. Zinn-Justin, Phys. Rep. 70 (1981) 109. 
[17] L. Lipantov, Pis'ma Zh. Eksp. Teor. Fiz. 25 (1977) 116 [JEPT Lett. 25 (1977) 104]. 
[18] E. Br6zin, J.C. Le Gill ou and J. Zinn-Justin, Phys. Rev. D 15 (1977) 1544. 
[19] I.G. Halliday and P. Suranyi, Phys. Rev. D21 (1980) 1529. 
[20] R. Fanelli and R.E. Struzynski, Am. J. Phys. 51 (1983) 561. 
[21] N. Aquino, J.L. L6pez-Bonilla and M.A. Rosales, Rev. Mex. Fis. 40 (1994) 946. 
[22] L.Gr. Ixaru, Phys. Rev. D25 (1982) 1557. 
[23] A. Berk, Phys. Rev. A31 (1985) 1241. 
[24] H.J. Silverstone, J.G. Harris, J. Ci~ek and J. Paldus, Phys. Rev. A32 (1985) 1965. 
[25] F. Vinette and J. Ci~ek, J. Math. Phys. 32 (1991) 3392. 
[26] C.E. Reid, J. Mol. Spectrosc. 36 (1970) 183. 
[27] R. Balsa, M. Plo, J.G. Esteve and A.F. Pacheco, Phys. Rev. D28 (1983) 1945. 
[28] R.M. Quick and H.G. Miller, Phys. Rev. D31 (1985) 2682. 
[29] S.N. Biswas, K. Datta, R.P. Saxena, P.K. Srivastava and V.S. Varna, J. Math. Phys. 14 (1973) 

1190. 
[30] K. Banerjee, Proc. Roy. Soc. Lond. A364 (1978) 265. 
[31] K. Banerjee, S.P. Bhatnager, V. Choudhury and S.S. Kanwal, Proc. Roy. Soc. Lond. A360 

(1978) 575. 
[32] G. Campoy and A. Palma, Act. M6x. Cien. y Tec. 11 (1984) 47. 
[33] R.N. Chaudhury and B. Mukherjee, J. Phys. A: Math. Gen. 17 (1984) 277. 
[34] F.M. Fernhndez, J.F. Oglivie and R.H. Tipping, J. Chem. Phys. 85 (1986) 5850. 
[35] A. Palma and G. Campoy, Phys. Lett. A121 (1987)221. 
[36] R. Saxena and V.S. Varma, J. Phys. A: Math. Gen. 15 (1982) L149. 
[37] L.I. Shift, Quantum Mechanics (McGraw-Hill, New York, 1955) pp. 269-279. 
[38] J. R+camier and R. Jhuregi, Int. J. Quantum Chem.: Quantum Chem. Symp. 26 (1992) 153. 
[39] R. J~iuregi andJ. R6camier, Phys. Rev. A46 (1992) 2240. 
[40] K. Banerjee and S.P. Bhatnager, Phys. Rev. D18 (1978) 4767. 
[41] F.M. Fern/mdez, Q. Ma and R.H. Tipping, Phys. Rev. A39 (1989) 1605; 

F.M. Fern/mdez, A.M. Meson and E.A. Castro, J. Phys. A 18 (1985) 1389. 
[42] R.N. Kesarwani and Y.P. Varshni, J. Math. Phys. 22 (1981) 1983. 
[43] S.B. Yuste, Phys. Rev. A48 (1993) 3478. 


