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We propose a numerical method to find solutions of the one-dimensional Schrédinger equa-

tion when the potential is symmetric and can be expanded in a polynomial form. We used a

non-perturbative method, in which we include explicitly the correct asymptotic behavior of the

wave function computed by the WKB method. The numerical convergence is very fast and

allows to compute the energy eigenvalues and eigenfunctions simultaneously. The method is

" applied to the quartic anharmonic oscillator with one and two wells, we compute the energy

eigenvalues for the ground state and for the first six excited states, the results obtained are in
agreement with those reported previously in the literature.

1. Introduction

There exists a great interest in finding analytic or numerical solutions for anhar-
monic oscillators in several fields of physics, for example in field theory and atomic
and molecular physics. In the latter, the anharmonic potentials are used to study
molecular vibrations of some diatomic molecules [1], or in small rings of com-
pounds like trimethylene oxide [2—4], cyclopentane [5], cyclobutane [6] and, in addi-
tion, in the study of NH3 inversion [7,8].

From a mathematical point of view, some authors [9,10] have made a complete
study about the analytic properties of the energy levels for the Hamiltonian
H = }(p* + x*) + Ax* as a function of the anharmonic parameter X. They showed
that the problem cannot be solved by using perturbation theory, because the pertur-
bative series for the energy in terms of the anharmonic parameter A diverges for
any value of A positive.

In their second paper, Bender and Wu [9] were able to show the complicated ana-
lytic structure of the energy E()) as a function of the anharmonic parameter A,
while studying the wave function in the WKB approximation at first order in .
Simon [10] and after Loeffel and Martin [11] gave a formal demonstration of the
conjectures of Bender—Wu, using Hilbert-space methods. The singular behavior of
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E(\) for the anharmonic oscillator opens the opportunity to propose new methods
to determine both the eigenvalues and the eigenfunctions for this problem. Loeffel
et al. [12] proved the Stieltjes property of Rayleigh—Schrédinger (RS) series and
discussed the convergence of any diagonal sequence of Padé aproximants. Also
they determined ground state energy eigenvalues for A< 0.5 using continued frac-
tions with the quotient difference algorithm,; Cizek and Vrscay [13] extended these
results for A <1000. The Borel summability of the anharmonic oscillator RS series
was established by Graffi et al.[14], and they reported ground state energy calcula-
tions for A<7.0; additional discussions on the Borel summability were done by
Caswell [15] and Zinn-Justin [16]. After Lipantov [17] introduced the functional-
integral equivalent to WKB approximation, Brézin et al. [18] used this idea to
rederive the leading terms of Bender-Wu. Halliday and Suranyi [19] using the
Lipantov’s idea developed an alternative perturbation series that converges, unlike
the conventional RS perturbation theory. Fanelli and Struzynski [20] proposed
the inclusion of an adjustable parameter into the perturbing and unperturbed terms
of the Hamiltonian; after this they used RS perturbation theory. They obtained bet-
ter values than the standard perturbation theory for small values of )\, and were
able to extend the range of applicability of this method to values of A <20000.0; fol-
lowing the method of Fanelli and Struzinski, Aquino et al. [21] computed the
energy eigenvalues for the anharmonic oscillator with double well. Iraxu [22] pro-
posed the use of a piecewise perturbation technique in which the unperturbed
potential is adjusted instead of the use of x? /2 as a reference potential and Ax* as the
perturbation. In 1985, Berk [23] published a paper where he showed that the pertur-
bation problem is reduced significantly if the asymptotic WK B wave function of
zero order is employed as the zero-order wave function. In the same year Silverston
et al. [24] obtained the RS perturbation theory energy coefficients using high-order
perturbation theory. Vinette and Cizek [25] established upper and lower bounds
of the ground state energy of anharmonic oscillators using the so-called “renorma-
lized inner projection technique” that is a combination of renormalization and
Loéwdin’s inner projection. This technique was successfully applied to quartic, sex-
tic and octic anharmonic oscillators.

A wide variety of non-perturbative methods have been used to calculate accurate
energy eigenvalues for the anharmonic oscillator: for example, the variational
method [26-28], the power series method [32-35], the Hill determinant method [29-
31,40}, high order WKB calculations [42], and phase integrals [43]. The inconveni-
ence of the methods based on a matrix diagonalization is the great amount of time
necessary to obtain high quality precision for the energy eigenvalues. In addition,
we cannot select only one particular energy level, because with the matrix method
one cannot avoid obtaining the lower levels too. On the other hand, with the meth-
ods based on power series we can compute each energy level independently of the
others. The time consumed in these calculations is very low and the convergence of
the energy eigenvalues is very fast.
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2. The method

In this section we will calculate the energy eigenvalues for the quartic anharmo-
nic oscillator without using perturbation theory. The corresponding Hamiltonian
is given, in atomic units, by

H=1p*+x2) +xx*, A>0, (1)
but in order to simplify our discussion, it will be written as

H =3(p* +x7) + g*x*,
where 2 = 2). The Schrédinger equation for this system is, therefore,

da*w

2. Mg
-3;5-+[E'—x2—ux]w_o, (2)
with E' = 2E, E being the eigenvalue of (1). Defining
x=p'ly,
eq. (2) reduces to
a2 _
Bz Tl =y =0, ©)

wheree = u~2/3F'.
If we assume a solution of the form

() => ay", (4)
n=0
then the coefficients a, must be determined. It is easily found that for both the
even solution (¢(0) = 1, ¢/(0) = 0 or, equivalently ay = 1, a; = 0) and the odd solu-
tion (¢(0) = 0, ¢'(0) = 1 or, equivalently @y = 0, a; = 1), the recurrence relation
for the coefficients is

—4/3
e / Ap-2 — €dy

Apyz = (n + 1)(n T 2) . (5)

However, as y increases it is necessary to take a large number of terms in order to
assure convergence. It is, hence, convenient to try another function with the correct
asymptotic behavior. For large values of y we may take the asymptotic behavior
of the wavefunction from a WKB calculation as follows: It is well known that the
wave function in WKB approximation [37] is given by

wwks(») = ¢(y) exp (ﬂ:i / yp(y)dy) :
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where ¢(y) is a slowly varying function and p(y) = \/e — V(y), for our case
V(y) = u=*3y? + y*. Then, as y is larger than ¢, we can develop p(y) through the

binomial theorem, and then approximate it as p(y) = i(y* + p~*/3). After doing the
integration and taking the minus sign (to assure convergence when y — + oo), the
exponential part of yyyp is exp(—y*/3 — u=*3y/2). Since we want the solution of
eq. (3) to be valid not only for large values of y, we propose the function

Vo) = aexp( L - ) ibmy ©)

where A4 is a constant.
When (6) is substituted into (3), the following recurrence relation is obtained:

b=1,

b2 (E+ H 8/3)b /27

1
b1 = —%[(m —2)(m = 1)by—2 — ,[4/3(m = )b

+ (e +57by), m>2. (7)

If the two solutions (4) and (6) are compatible for any value of y # 0, the following
equations must hold:

o(y) =w() and ¢'(y)=v'(y)

or

&)/ o) =v' ) /vy

for every y where ¢(y) # Oand y(y) # 0.
In order to compute the energy eigenvalues we consider the function

fle,y) =¢'(e,9)/d(e,y) —¥w'(€,y)/w(e,y) (8)

defined for values of e and y such that ¢ and y do not vanish.

The function thus defined is identically zero for the exact value of the energy
(independently of the value of y), but it is non-zero for other values of e. Therefore,
it only remains to find the roots of eq. (8) in order to determine the energy eigenva-
lues. We may begin by choosing the initial value of y as the classical turning point,
while the initial energy ey must be estimated a priori.

Once the value of y is chosen (represented by y*), it is kept fixed and the energy
eigenvalues are calculated by the Newton-Raphson method:

€ntl = € _f(Emy*)/f’(fmy*)» (9)

where the prime indicates derivative with respect to the energy.
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2.1. NUMERICAL RESULTS

With this method we compute the ground state and the first six excited states
for the anharmonic oscillator; in table 1 we show the results. The values obtained
are exact up to the ninth decimal figure. These results can be compared with those
of refs. [30,32,35,38,39]. The eigenvalues in columns 2-4 are the same as those
obtained by Palma and Campoy [32,35] with a different method, whereas the result
of thelast column is reported only by Banerjee [30].

To obtain the precision shown in table 1, the number of terms used in each series
were about 40 for eq. (4) and about 60 for eq. (6), using y* = classical turning
point.

The choice of y* equal to or greater than the turning point is for convenience,
because the oscillations of wave functions in the permitted classical region could
produce points where ¢(y) or y(y) is equal to zero and then we cannot use eq. (8) to
obtain the energy eigenvalues. On the other hand, in the classically prohibited
region the wave functions are very smooth and the probability of finding points y*
where eq. (8) is not defined decreases. In practice we did not have trouble with
any of our calculations using this fact. Another remark of computational impor-
tance is the following: when y* is smaller than the classical turning point we need a
large number of terms to assure the convergence of function y, the opposite fact
occurs when y* is greater than the classical turning point, then ¢ converge very
slowly; the best choice of y* then is near the classical turning point.

3. The anharmonic oscillator with double well

The Hamiltonian for the quartic anharmonic oscillator with double well is
H=1p*—x*) +x*. (10)

The main feature of this problem is that the lower energy eigenvalues are very clo-

Table 1

Energy eigenvalues for the anharmonic oscillator eq. (1) as a function of the anharmonic parameter
). The eigenvalues were obtained using eq. (9) taking y* = classical turning point. These values are in
complete agreement with those reported previously in refs. {30,32,35,38,39].

n A=0.1 A=1025 A=1.0 A =100 A = 5000

0 0.559146327 0.620927029 0.803770651 3.131384164 11.430804350
1 1.769502644 2.025966164 2.737892268 11.187254251 40.951658476
2 3.138624308 3.698450319 5.179291687 21.906898149 80.342956305
3 4.628828089 5.557577138 7.942403984 34.182524112 125.475371945
4 6.220300900 7.568422873 10.963583094 47.707205851 175.217948105
5 7.899767227 9.709147876 14203139104 62.281237969 228.832287501
6 9.657839992 11.964543620 17.634049116 77.770770599 285.823895809
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sely (almost degenerate) bunched in pairs when the wells are very far. The most
interesting quantity to compute is the splitting between these pairs of energy levels
when X — 0 because the separation distance between the two wells follows A™1/2,
This problem cannot be solved with the use of perturbation theory. This can be
qualitatively understood by observing that the term Ax* transforms the continuous
spectrum 1(p? — x?) into a completely discrete spectrum. The alternative perturba-
tion expansion in parameter A takes Ho = 1p? + x* as the non-perturbed Hamilto-
nian (assuming that this spectrum is known), but this alternative does not work,
because the perturbation becomes too large for small A, which is the regime of
interest.
The Schrédinger equation for the anharmonic oscillator with double well is

dW)dy* + [E' + u 3y -y =0, (11)

where u, y and E’ were defined in section 2. We may use the method described in
section 2 to solve eq. (11) without important modifications. The solution near the
origin is, as before, given by eq. (4), whereas the far solution that includes the
asymptotic behavior is

3,43\ @
— y —m
w(y) =cxp(——3y +£ 5 )mey : (12)
m=1

Substitution of solutions (4) and (12) into eq. (11) gives a recurrence relation for
the coefficients a, and b,. To compute the energy eigenvalues it is necessary to find
the zeros of function f defined by eq. (8). To do this we need to evaluate both f
and /7 in a point y* whose value must be greater than or equal to the maximum of
the classical turning points. The classical turning points are determined by the
equation

y4 - u—4/3y2 . EI — O
3.1. NUMERICAL RESULTS
The energy eigenvalues obtained using this method are given in table 2. In addi-

tion to the quantum number n we include the spectroscopic notation where the
superindex s means the symmetric state and a denotes the antisymmetric one. The

Table2

Energy eigenvalues for the anharmonic oscillator with double well as a function of parameter A.

n State A= 0.005 A=10.01 A=0.02 A =005 A=0.10
0o —11.797975697 —5.553236207  —2.439438881  —0.632746418  —0.154124828
1 0 —~11.797975697 —5.553236206  —2.439345769  —0.576529565 0.142765102
21 —10.414903197 —4.203985943  —1.174320024 0.254744272 1.010188900

3 1 —10.414903197 —4.203985695  —1.165868331 0.771773019 1.949137370
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values showed in table 2 were also obtained by Banerjee [40] by using a different
method; another approach to solve this problem based on the variational method
can be found in refs. [27,28]. These values were obtained using about 100 terms in
the wave functions (about 40 foreq. (4) and about 60ineq. (12)).

The remarks about the selection of y* discussed in the previous section are valid
for this problem too.

4. Pure quartic oscillator

As afinal example, we consider the pure quartic potential
V(x)=x*.

Using the method of previous sections, we first obtain the recurrence relations for
the coefficients g, and b,;:

even states:

ay=1, ay=-EJ/2, as=—-Eay/12;
odd states:

ay=1, a3=-E/6, as=—Ea3/20. (21)
In general we have

Apyy = _On-s — Bap for n=4.

(n+1)(n+2)
Whereas for the asymptotic solution, we have
by=1, by=-E/2, by=—Eb/4
and
Eb,+(n—1)(n—2)b,—>
2n
The energy eigenvalues for this problem are reported in table 3, they are compared

by =~ forn=3.

Table 3

Energy eigenvalues for potential ¥ (x) = x*.
n Present work Exactref. [31,41]
0 1.0603620904 1.06036209048
1 3.7996730298 3.79967302980
2 7.4556979379 7.45569793798
3 11.644745511 11.6447455113
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with those obtained by the method of refs. [31,41]. We can see that our calculations
are in agreement with previous calculations.

5. Conclusions

The method proposed in this paper allows to compute every energy level inde-
pendently of the others. To do this it is necessary to initialize the process by giving
an initial value for the energy eigenvalue ¢y and the point y* is usually taken as the
classical turning point or greater. Sometimes, when y* is too small the function ¢
(eq. (4)) converges very fast, but the function y (eq. (6) or (11)) converges very
slow (or does not converge); in this case it is convenient to increase the value of y* to
assure the convergence of both functions.

The convergence of our method is better than those mentioned in this paper
because we are including the asymptotic behavior explicitly in the wave function.
We can use this method without modifications for the anharmonic oscillator with
one and two wells, whereas the Biswas [29] and Saxena [36] methods cannot be used
for both problems.

As we showed, the method 1s used without modifications for quite different
values of the anharmonic parameter A given the same precision for the eigenvalues.
If we want to know the explicit form of the wave function, it can be calculated
fromegs. (4) and (6).
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